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Abstract
We describe a simple yet extremely effective tight-binding parametrization
for Ge–Ge and Si–Ge interactions in near-tetrahedral bonding situations, in
particular on the (001) surface of Si and Ge, and present results of tests on
various systems (including ad-dimers of Ge and the square structure found
during gas-source growth).

1. Introduction

Strained growth of semiconductors can lead to self-assembly of nanostructures, for instance the
spontaneous formation of Ge ‘hut’ clusters on Si(001) [1]. Si–Ge alloys and superlattices of
Si/Ge are attractive for the semiconductor industry because of the compatibility with existing
Si-based technologies, and the possibility of using the Ge hut clusters as quantum dots is
intriguing. Ge on Si is also a model system for the study of strained growth, exhibiting classic
Stranski–Krastanow behaviour: formation of a strained, pseudomorphic wetting layer followed
by three-dimensional islands when the strain becomes too large. Understanding the growth
of Ge on Si(001) is of great importance for the successful development of devices based on
Ge/Si and for exploring the possibilities of self-assembled quantum dots in nanotechnology.

In order to study strained semiconductor surfaces, where large two- and three-dimensional
reconstructions and features are important, a compromise between computational effort and
accuracy is required: tight binding [2] is a method which retains quantum mechanics but
makes a clearly defined set of approximations which allow large systems to be simulated in
a reasonable amount of time. With the advent of many successful linear scaling techniques
(where the computational effort increases only linearly with the number of atoms in the system
rather than with the cube in traditional methods) [3], modelling of significant features on
semiconductor surfaces becomes possible.

The key drawback of tight binding comes from its very basis: the Hamiltonian is
approximated by a set of parameters, which must be fitted to experimental or ab initio data.
The transferability of these parameters (i.e. the accuracy of calculations where the atomic
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Table 1. On-site energies for Ge and Si.

Element Es Ep

Si −12.20 −5.75
Ge −13.88 −6.39

environment is far from that in which the fitting was performed) is always of great concern;
fitting a good set of parameters can often involve complicated scaling functions and a large
investment of time. In this paper, a simple parametrization is described which was created
rather quickly, and yet proves to be extremely effective for near-tetrahedral bonding situations;
in this way, it is similar to a recent parametrization created for Bi/Si(001) interactions [4] where
a simple parametrization has proved remarkably effective [5, 6]. However, it should be noted
that, due to the simple scaling form and limited fitting, the parametrization will not be very
transferable away from near-tetrahedral bonding situations. The Si–Si interactions are taken
from an earlier work [7], which uses a slightly more complicated scaling form.

The rest of the paper is organized as follows: in the next section, the fitting procedure is
described. Section 3 presents tests of the parametrization, compared with ab initio modelling.
In section 4 the stability and appearance of four-membered rings of Ge on Si(001) (which
are potentially the nucleus for gas-source growth) is investigated, followed by concluding
discussions.

2. Methodology

Tight binding postulates (and in more recent, ab initio tight-binding methods, specifies) a
basis set of local, atomic-like orbitals. The Hamiltonian is written in terms of matrix elements
between these orbitals, which are then parametrized, generally being written as an equilibrium
hopping integral multiplied by a scaling term. Cohesive energies are obtained by adding a pair-
wise repulsive term to account for all interactions previously neglected; the whole procedure
(in particular the use of pair-wise repulsive terms) has been rather elegantly justified by Sutton
et al [8]. Details of the parametrization for Si–Si bonds (and Si–H which are used to terminate
the base of the slab) are given elsewhere [7].

The hopping integrals (which define the Hamiltonian at equilibrium bond lengths) can be
fitted analytically to certain high-symmetry points in the band structure, and this has already
been done for many tetrahedral semiconductors [9]. We chose to use these parameters for the
equilibrium hopping integrals, with one exception: after fitting the bands with the usual sp3

basis set, Vogl et al added post hoc an s∗ orbital to improve the shape and fit of the lowest
conduction bands; we shall ignore this complication (as we are not concerned with these bands
or their effects).

The value of the on-site energies (Es and Ep) can be arbitrarily shifted provided the
separation is maintained. For the Si–Si parameters, we use a separate parametrization [7], and
have shifted the Vogl et al values of Es and Ep for Ge so that the offset of Es in Ge relative
to Es in Si is preserved between the parametrizations. The values of the on-site energies are
given in table 1 and the hopping parameters are given in table 2. To find hopping parameters
for the Si–Ge interactions, the geometric mean of the Si–Si and Ge–Ge parameters was taken
(this is remarkably effective, and follows Chadi [10]).

Once the equilibrium hopping parameters have been found, the question of scaling
arises: how do they vary with changing atomic separation? There are many different
scaling forms, ranging from simple [10] to extremely complex. In this work, as in an earlier
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Table 2. Hopping parameters for Ge–Ge and Si–Ge interactions.

Interaction hssσ hspσ hppσ hppπ

Ge–Ge −1.695 2.366 2.853 −0.823
Si–Ge −1.812 2.032 2.950 −0.941

Table 3. Scaling for Ge–Ge and Si–Ge interactions.

Interaction r0 n m φ0

Ge–Ge 2.447 2.353 4.993 4.014
Si–Ge 2.398 2.289 5.306 3.714

parametrization [4], we choose to use a simple form for scaling which allows physical insight
and analytical expressions for the fitting:

h(r) = hllm

( r0

r

)n

, (1)

where r0 is the equilibrium distance for the bond. The same form is used for the repulsive
term, sharing the same value of r0 but with a different exponent, m:

φ(r) = φ0

( r0

r

)m

. (2)

To fit the scaling, total energies must be considered, which also requires fitting the scaling
and magnitude of the pair-wise repulsive potential. These were fitted to density functional
calculations of the binding energy curves for bulk Ge and a zincblende structure 50% Si–Ge
alloy. The density functional calculations were fully converged with respect to k-points (using
a 4×4×4 Monkhurst–Pack mesh, tested against 6×6×6 and 8×8×8 meshes for convergence)
and plane wave cutoff (225 eV, tested against a 300 eV cutoff). The fitting procedure, which
can be done analytically, involves three stages.

(i) Fit the magnitude of the repulsive potential, φ0, to the total energy at equilibrium.
(ii) Obtain a minimum at the equilibrium lattice constant by varying either m or n.

(iii) Fit the shape of the binding energy curve (equivalent to fitting the bulk modulus) by
preserving the ratio of m and n (this maintains the minimum at the equilibrium lattice
constant) but varying their magnitude.

The initial values of n and m can be taken to be 2 and 4 respectively (there are good physical
reasons for choosing these values [11]). The final values of φ0, n and m are given in table 3.
The Hamiltonian was cut off between first- and second-nearest neighbours (i.e. at about 3.0 Å,
though there is some leeway on this distance).

3. Tests of the parametrization

As the parametrization is intended for modelling Ge on Si(001), a good series of tests will be
the relative stabilities of Ge dimers on Si(001). The ad-dimer can sit in one of two sites (on top
of the dimer row, or on top of the trench between dimer rows) and in one of two orientations
(parallel to the underlying dimers, or perpendicular (referred to below as ‘rotated’) to them).
This will involve relatively long bonds between both Si and Ge, as well as a large range of
bonding angles, testing the parametrization rather well.

The calculations were performed with two different electronic structure techniques: tight
binding (using the density matrix method (DMM) [12] in an implementation by Goringe [13]
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Table 4. Relative stabilities and bond lengths of Ge ad-dimers on Si(001) from ab initio and tight-
binding calculations. Energies are given relative to the rotated dimer over the Si dimer row, which is
the lowest-energy structure in ab initio DFT calculations. Units are eV for energies and Ångstroms
for distances.

Position δEDMM δEDiag δEDFT Ge–GeDMM Ge–GeDiag Ge–GeDFT

Row para. −0.04 0.10 0.20 2.57 2.56 2.56
Row rot. 0.00 0.00 0.0 2.57 2.59 2.59
Trench para. 0.28 0.37 0.65 2.79 2.78 2.72
Trench rot. 0.11 0.16 0.06 2.52 2.52 2.47

and an exact diagonalization technique); and for ab initio results to check the tight binding,
the local density approximation (LDA) to density functional theory (DFT), using the VASP
code [14]. Since the DMM technique is an O(N) technique, it makes an approximation
by truncating the range of the density matrix. While it has been shown that the DMM
technique works well with modest cutoffs (such as that used in this work) for situations such as
semiconductor surfaces [15], in particular converging forces and energy differences extremely
rapidly, we have also performed exact diagonalization simulations to check that the DMM is
performing well in this situation. We performed simulations with the same parametrization,
using a 4 × 4 × 1 Monkhorst–Pack k-point mesh (though the change from a 2 × 2 × 1 mesh
was less than 0.01 eV). The same unit cells were used for all the calculations (two dimer
rows wide with four dimers in each row, and five layers deep with the bottom layer fixed
in bulk positions and terminated in hydrogen). The DMM tight-binding calculations used a
spatial cutoff on the density matrix of three Hamiltonian hops, while the LDA calculations
used ultrasoft pseudopotentials, a plane wave cutoff of 150 eV and a 4×4×1 Monkhorst–Pack
k-point mesh. The results are given in table 4.

We see two good sets of agreement: the DMM agrees well with the exact diagonalization,
and the tight-binding results agree reasonably well with the LDA results, though there are slight
problems. The exact diagonalization achieves correct ordering of the various dimers, though
the magnitudes are not always correct. The DMM finds that the parallel Ge dimer over the row
is too stable by 0.25 eV, and the parallel Ge dimer over the trench is also too stable, by 0.37 eV
(compared with LDA results). The Ge–Ge bond lengths are well reproduced, capturing the
trends in the bonding. From these results we can conclude that the parametrization performs
respectably, though results for individual dimers are better for the rotated (epitaxial) dimers
than the parallel ones. As we are primarily interested in modelling epitaxial growth of Ge on
Si(001), our calculations should be well served. It is also reassuring to note that the DMM is
remarkably accurate with a three-hop cluster, so that large scale calculations on strain-induced
reconstructions can use this size of cluster with confidence.

We should make one final comment about tight binding in general, and this system in
particular. This simple form of tight binding does not include any form of self-consistency
(though it can be introduced through schemes such as local charge neutrality [8]) nor does it
have any cost for moving charge. As a result, for some structures there will occasionally be
large, unphysical charge transfer and an anomalously low energy. However, these situations
are normally clear, and can often be avoided by a more careful choice of starting positions.

4. Square features on Si(001)

During gas-source growth of Si(001) (using disilane, Si2H6, as the source) square features
were observed with STM on the growth surface; these features were always the first to form on
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(a) (b)

Figure 1. The structure of the relaxed germanium ‘square’ on Si(001). (a) Top view; (b) side view.
Dark atoms are germanium, light silicon and white hydrogen.

(This figure is in colour only in the electronic version)

the newly grown islands [16]. They were identified as rhomboids of four silicon atoms which
flipped rapidly between two equivalent configurations, giving rise to a square appearance,
and were postulated as the nucleus of gas-source growth [16]. As such, they are of great
potential importance. During subsequent experiments on gas-source growth of Ge on Si(001)
(using germane, GeH4, as the source) similar features were observed, and tentatively identified
as being four germanium atoms sharing the same structure as the silicon squares with some
preliminary modelling [17]. Here we investigate thoroughly their structure and the barrier to
flipping from one configuration to another using the parametrization presented above.

Taking a square of germanium atoms, and allowing it to relax yields the structure shown
in figure 1. This structure is 0.97 eV lower in energy than two isolated Ge dimers (in
the row parallel configuration), which is similar to the stability of the Si square modelled
previously with tight binding [16]. As can be seen, the structure is not symmetric, with figure 1
showing only one configuration. In order to confirm that this feature is indeed what is seen in
STM (i.e. that it can flip easily at 300 K or above), we need to calculate the barrier to flipping
between the two configurations. The key parameter in this change between configurations is
the height difference between pairs of atoms—each ‘up’ atom has to change with a ‘down’
atom for the configuration to flip. We have fixed this height difference (in figure 1(a), the height
difference between the two ‘up’ Ge atoms and the two ‘down’ Ge atoms has been maintained)
to various values and calculated an energy barrier to flipping, which we find to be 0.59 eV.

A barrier of 0.59 eV, if we assume an attempt frequency of 1013 s−1 in an Arrhenius
formula gives about 560 flips s−1 at 300 K. As the STM which took the images could only scan
at a maximum speed of 10 lines s−1, the square would have flipped 50–60 times during each
scan line. As before, with the silicon square, this will result in a uniform, square appearance
(just as dimers appear uniform though they are buckled). This confirms that the features seen
in STM are what we predicted.

5. Conclusions

We have shown how a simple approach to fitting tight-binding parametrizations can be
extremely successful. Using physical understanding, and fitting to a limited, simple fitting
form, a useful tight-binding parametrization can be created with relatively low effort. We have
used the Ge/Si parametrization to investigate square features on Si(001) formed during gas
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source growth, and identified their structure. We plan to model a variety of the strain effects seen
during epitaxial growth of Ge on Si(001) using the parametrization, which will be presented
in future work.
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